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Technical Accomplishments 

Market-based techniques represent a general approach to resource allocation in 
decentralized environments. In dynamic situations, the ability to find effective 
allocations of resources without central information and control is a crucial 
element of adaptivity. The Michigan Adaptive Resource eXchange (MARX) 
Project has developed market models for a variety of resource allocation 
problems-both canonical and application-specific. An overview of results from 
these efforts demonstrates the range of applicability of these methods, and their 
role in achieving survivable responses to resource shocks in distributed systems. 

Market-Based Resource Allocation 

A premise of inherent survivability is that a system can be made robust to 
partially successful attack through general architectural features. One way to 
achieve inherent survivability is through adaptivity. flexible response to 
unanticipated changes in environment. The key to successful adaptive behavior 
is flexibility—-the ability to adapt to a range of adverse events without having to 
anticipate the particular responses in advance. 

One important way to promote adaptivity is through dynamic resource allocation. 
Typically, the "unanticipated changes" that the system must respond to come in 
the form of lost or degraded resources, or new tasks that require resources. The 
response therefore takes the form of a new allocation of (remaining) resources 
to new and existing tasks. A flexible response through dynamic allocation is m 
principle possible in any context where resources may be redirected to multiple 
functions. That is, a resource originally intended for one use can be applied to 
another more critical use when the situation calls for it. 

The problem then reduces to how to effectively perform dynamic resource 
allocation. For inherent survivability, the question is how to build this capability 
into the fundamental architecture of infrastructure for large-scale information 
systems. 

For the past few years, the MARX Project (Michigan Adaptive Resource eXchange, 
http://ai.eecs.umich.edu/MARX) has investigated a market-based approach: 
organize the system in terms of a computational market, where the entities {agents) 
controlling and capable of employing resources exchange them through a market 
price system. Building a computational market requires commerce infrastructure: 
basic services implementing negotiation, exchange (including payment in 
standard currencies), and other core functions of an operational economy. 

There are many technical arguments—both computational and economic—in 
favor of adopting a market-based approach to dynamic resource allocation 
(Wellman and Wurman 1998a). We briefly mention a few of the more salient 
ones. 

•    Decentralization. Large-scale information systems typically involve multiple, 
geographically and administratively distributed participants. No central 



source has the information or authority to make global decisions about how 
resources should be deployed. Markets are naturally decentralized according 
to agents representing distinct interests and capabilities. 

• Distributed decision and communication. Even when decisions could in principle 
be centralized, such an approach is often infeasible due to tractability, 
modularity, fault tolerance, or (most importantly in this context) vulnerability 
concerns. Markets are distributed in two fundamental ways. First, agents 
make local decisions based on their private information and objectives. 
Second, individual resources can be allocated according to separate 
mechanisms (i.e., each resource has its own price), with interdependencies 
among them accounted for by the agent's negotiation strategies. 

• Value-based allocation. Markets inherently account for the relative values and 
costs of resources and activities when determining allocations. This is in 
contrast to fixed priority schemes, common in most non-market systems. 
Agents indicate local values and costs in their negotiations, which are 
subsequently reflected in prices. Under certain conditions, markets are 
known to produce efficient (optimal) allocations despite the diversity of 
interests and locality of decision making. 

• Embedding in economy. Information systems are not isolated, and indeed the 
activities mediated through the system ultimately connect to the real world. 
Thus, it is necessary (and desirable) to consider allocating resources not only 
within the system, but between entities in the system in the outside world. All 
real-world entities with significant use or production of resources are already 
equipped with a "market interface", that is, they naturally deal in economic 
terms, simply because markets are a "world standard". 

This last reason suggests that market-based architectures are not only 
appropriate, but also in a sense inevitable. What may not be inevitable is an 
explicit fundamental connection between the external market economy and 
system infrastructure. We argue that such a seamless integration is in fact 
desirable, as imposing an additional, incompatible resource allocation mechanism 
for distinguished "system" resources introduces an arbitrary and artificial 
boundary. Indeed, the value of system resources ultimately lies in how they 
promote goals (or what their alternative uses are) outside the system, and so 
connecting them explicitly seems more likely to lead to proper valuations. 

Finally, the rapid development of infrastructure supporting all phases of 
electronic commerce will naturally serve as building blocks for development of 
market-based architectures for information systems. Thus, the market-based 
approach represents the ultimate "COTS" (commercial off-the-shelf) solution, 
both in terms of middleware services supporting market functions, and in terms 
of modules developed by commercial entities for market-based interaction 
within and outside the system boundaries. 



The MARX Project 

As indicated in the hierarchy of topics displayed in Figure 1, research in MARX 
has been divided into work on particular dynamic resource allocation problems, 
and development of generic infrastructure for deploying computational markets. 
Problems we have modeled in turn fall into two types: allocation of 
computational resources within information systems, and canonical allocation 
problems defined by problem structure rather than application. In order to 
assess the performance of pragmatic allocation mechanisms for these problems 
we have had to pursue methods for the assessment of pragmatic mechanisms, 
since the traditional theoretical analyses are limited to mechanisms that may 
provably not exist for our problems. 

MARX 

Resource Allocation Problems Computational Market Infrastructure 

Info System Applications 

Canonical Allocation Problems 

Web Caching        Packet Scheduling 

Scheduling    Supply Chains     Single Good 

Figure 1: MARX project research topics. 

Problems Studied 

Only by examining specific information-system applications can we compare 
results from the computational market with alternative approaches, and only by 
generalizing to domain-independent problem classes can we establish that our 
methodology will cover a broad range of survivability contexts. 

Under information system applications, we have chosen two important and very 
well-studied problems—web caching and packet scheduling. These two examples 
stand for large classes of important problems. The first is an important instance 
of distributed data storage; the second an instance of data transport. As described 
below, these problems admit multiple market-based approaches, which in some 
instances can be related to well-known non-market allocation schemes. This 
facilitates evaluation of allocation quality as well as adaptivity properties. 

Our canonical allocation problems are designed to represent important patterns 
of resource allocation that occur across a multitude of application contexts. The 
simplest are the "single good" problems, which concern the negotiation of 
transfers of a single resource type. The simple structure of these problems makes 



them amenable to in-depth analysis, including a near exhaustive consideration of 
negotiation mechanisms and strategies. Understanding the single-good problem 
(which is also very well characterized in the economic literature) is a prerequisite 
to informed design of computational markets for more complex problems 
involving multiple resource types. 

Problems involving complex interrelated activities invariably involve multiple 
resource types. Although these resources can be allocated through multiple 
single-resource mechanisms, the interdependencies among the resources 
significantly complicate the problem of effective resource allocation. In our 
MARX research, we have been exploring two particularly common and 
challenging source of interdependencies. First, in scheduling problems, resources 
have temporal dependencies, meaning that the value of a resource for a 
particular use depends fundamentally on when it is employed (e.g., whether it 
enables the user to meet a deadline). We have some particular protocols for 
market based scheduling. The techniques work well for some problem classes, 
but others can be fundamentally difficult to decentralize (Walsh et al. 1998; 
Wellman et al. to appear). Second, in supply chain problems (Walsh and Wellman 
1999b), dependencies are prerequisite relationships between elements in the 
chain. We have captured an interesting class of supply chain problems in our task 
dependency network model described below. In addition, we have considered 
combinations of scheduling and supply chain problems, involving both sorts of 
dependencies. We believe that these two patterns represent the important 
dependencies arising in a large class of allocation problems underlying large- 
scale systems. These resource allocation problems serve as the source of dynamic 
allocation scenarios that can demonstrate inherent survivability through market- 
based adaptivity. Specific applications represent potential domains for the 
demonstrations, whereas the canonical problems dictate our approach to 
mapping our techniques to new domains. The computational infrastructure for 
market-based allocation we have developed in the MARX project provides a 
vehicle for deploying these demonstrations. 

Methods 

In our research we are developing methods for pragmatic mechanism design. A 
mechanism is a set of rules that specifies allocations as a function of messages 
from the agents who hold private information (an auction is a classic example). 
There is an extensive theoretical literature on the design of resource allocation 
mechanisms (Campbell 1987; Mas-Colell, Whinston, and Green 1995). The 
standard approach is to seek a mechanism that always yields an allocation that is 
maximally efficient subject to plausibility constraints on agent behavior. A typical 
set of constraints is that agents are rational in the sense of playing Bayesian-Nash 
strategies; their messages are consistent with self-interest (and thus may not be 
truthful revelations of their private information); and they (including the 
mediator or auctioneer) will not participate unless they expect to be no worse off 
as a consequence of participating. Unfortunately in the negotiation problems on 
which we focus, well-known results establish that no mechanism (market or 
otherwise) exists that satisfies this set of seemingly reasonable constraints while 
always guaranteeing efficient allocations (Gibbard 1973; Myerson and 



Satterthwaite 1983). Obviously, for the reasons above and others, market-based 
mechanisms are still of considerable real world importance. We thus have been 
developing methods to design and assess feasible mechanisms that cannot satisfy 
the full set of standard desiderata. 

One of our methods is conventional theoretical performance analysis, but subject 
to the feasibility constraint: we relax one of the assumptions on plausible behavior 
enough to avoid the impossibility results cited above. For example, in our study 
of market mechanisms for scheduling problems, we have sharp results on 
performance when agents are restricted to natural but not fully rational bidding 
strategies (Wellman et al. to appear). Another method is to simulate allocation 
outcomes under reasonable assumptions on agent behavior. We have used this 
method to assess allocation efficiency (Anderson, Birgean, and MacKie-Mason 
1999; Wurman 1999)(Kelly et al. 1999a, 1999b; Callaway or other packet 
scheduling work). We have used both of these methods to assess the 
performance of a non-price economic allocation mechanism (the Generalized 
Vickrey Auction (MacKie-Mason and Varian 1994)). For example, in our 
application of the GVA to scheduling (Wellman et al. to appear), we relax the 
requirement that the auctioneer balance its budget. In a single-good context 
(Anderson, Birgean, and MacKie-Mason 1999), we give up some efficiency in 
order to balance the budget through participation and transaction fees. 

Information System Applications 

Our argument that dynamic resource allocation via computational markets 
yields inherent survivability hinges on the premise that most important 
applications can be cast in this framework. We have significant experience in 
mapping a wide range of problems to the market framework, including those 
described here and others (Wellman 1996). Most practical resource allocation 
problems fall in one of the four categories formed by crossing discrete or 
continuous quantity scales with discrete or continuous time scales. Therefore, 
many interesting problems fit models we have already designed and tested. In 
this section we describe two particular applications, to resource allocation 
problems arising in networked information systems. 

Wide-Area Storage Allocation (Web Caching) 

The problem of Web caching is that of selectively allocating storage on a wide- 
area network in such a way as to maximize value to system users. Shared Web 
caches provide different benefits for different classes of users: latency reduction 
for clients, congestion reduction for all network users, and load reduction for 
servers. Disk space in shared Web caches is a strategically-placed scarce resource 
that may be diverted to serve some users at the expense of others, and therefore 
these caches are ideal loci for differential quality-of-service (QoS) mechanisms. 
We have explored two kinds of mechanisms that bias the allocation of cache 
space toward system users (servers and clients) who value caching most. One 
approach is to generalize conventional cache replacement policies such as the 
"least frequently used" (LFU) algorithm. Another is to design explicit market 
allocation mechanisms in which agents bid for disk space in shared caches. We 



have pursued both of these methodologies and have evaluated several designs 
in comparison with conventional cache management algorithms (Williams et al. 
1996). 

It is sometimes possible to establish tight bounds on the performance of cache 
replacement policies independent of workload (client document request 
patterns) (Irani 1997; Sleator and Tarjan 1985). This approach, however, yields 
performance guarantees far weaker and more pessimistic than the observed 
performance of most reasonable removal policies under real workloads. In order 
to evaluate the relative performance of practical caching schemes we must 
therefore employ trace-driven simulation, in which a cache simulator processes 
workloads logged at actual caches. The National Laboratory for Applied 
Network Research (NLANR) currently operates ten large Web caches 
nationwide, each of which serves many corporate- and campus-sized client 
networks. We obtained client request data collected at six of these caches over a 
four-week period and wrote a general-purpose cache simulator to support trace- 
driven experiments. A distinguishing feature of our evaluation methodology is 
that our main performance metric is value delivered to system users rather than 
standard metrics such as byte hit rate (fraction of requested data served from 
cache rather than servers). By diverting disk space to serve the needs of those 
who most value caching (variable QoS), we aim to increase the aggregate value 
of the cache (utility maximization), as compared with value-insensitive 
replacement policies. 

In the LFU replacement policy, unpopular data are flushed from the cache in 
favor of heavily requested data. Formally, if n„ is the number of requests for 
URL u and size„ is its size, an LFU cache stores URLs with the highest observed 
values of nu. Let sizeuVH be the benefit that the server associated with u receives 
when requests for u are served from cache rather than by the server. Our 
weighted LFU cache replacement policy stores URLs with the highest value of 
n„V„, because these are precisely the items that generate the most aggregate 
utility per unit cache size. The potential value generated by URL u per unit size is 
given by 

Sr,,,„,sfs/or„ (size„Vu I size,) = nuV„. 

Weighted LFU is interesting because it corresponds exactly to the policy resulting 
from a market-based mechanism: it is natural to interpret sizeHV„ as a server's 
payment to a profit-maximizing cache each time the cache serves u. Experiments 
have shown that this simple generalization of LFU delivers substantially higher 
aggregate value to servers than ordinary LFU for some distributions of V„. For 
example, Figure 2 presents simulation results for a two-week interval of NLANR 
data for a large cache site (Kelly et al. 1999). As the graph shows, weighted LFU 
outperforms LFU or LRU (the least-recently-used replacement policy) for any 
given cache size. Weighted LFU performs even better when augmented with a 
tunable aging mechanism that prevents the cache from becoming cluttered with 
formerly-popular documents that are no longer requested (Kelly, Jamin, and 
MacKie-Mason 1999). Extensive experiments have shown that weighted LFU 
with aging usually delivers more aggregate value to servers than "best-of- 



breed" algorithms from the Web caching literature, e.g., "Greedy-Dual Size" 
(Cao and Irani 1997). 

UC site 8/15-8/28 

16 64 
cache size (MB) 

1024 

Figure 2: In this trial, weighted LFU (wLFU) provided higher value than 
unweighted frequency- or recency-based policies (uLFU and pLRU). 

Whereas weighted LFU successfully exploits server valuation information to 
deliver high value to system users, it is not likely to obtain this private 
information: servers would generally find it advantageous to report false Vu 

values. An incentive-compatible allocation mechanism has the property that 
truthful revelation of valuation information is a dominant strategy for 
participating agents. In our implementation, weighted LFU is not incentive 
compatible. By contrast, a periodic auction market in which servers and clients 
directly bid for cache disk space can be incentive compatible, given the right 
choice of auction. We have investigated a scenario in which servers with simple 
and reasonable bidding strategies contend for disk space via periodic incentive- 
compatible auctions. We characterize some conditions under which this 
particular system can obtain higher overall value than even weighted LFU with 
aging (Chan et al. 1999). 

Packet Scheduling 

The fundamental feature of a market-based packet scheduling system is that it 
provides differential QoS to packets based on willingness to pay, as expressed in 
bids. We achieve this through a bid-sensitive queuing system, consisting of two 
parts: the scheduling discipline which determines the next packet to be served, and 
a dropping policy which determines the packet to drop when the queue is full. 

Scheduling Disciplines 

We study two scheduling disciplines that can provide market-based QoS: Lottery 
Scheduling (Waldspurger and Weihl 1994) and Deterministic (Static Priority) 
Scheduling. For comparison purposes, we also include traditional FIFO (first-in- 
first-out) scheduling in our study. 



Lottery Scheduling is a probabilistic method, originally proposed for CPU 
scheduling. The next packet to be served is chosen by holding a lottery, with the 
probability of an individual packet being served being proportional to its bid 
value: 

Pr(packet k is served) = Bk / X,ß;, 

where B, is the bid value of packet i and;' ranges over the packets in queue. 

With lottery scheduling, packets with higher bids have a greater chance of being 
served next. Therefore, during times of congestion higher bid packets should 
typically experience lower queuing delay than packets with lower bids. 
However, since low bid packets nevertheless will have a chance of being served, 
they will not be starved. Even if high bid packets keep arriving, low bid packets 
will still receive a share of the bandwidth proportional to their bid value. 

One side effect of Lottery Scheduling is that packets in a flow have a higher 
probability of arriving out of order at the receiver. When a flow has more than 
one packet in a router's queue, each packet has equal probability of being 
forwarded next (assuming the flow has not changed the bid value carried by its 
packets). 

Deterministic Scheduling always forwards the packet with the highest bid. If the 
queue contains multiple packets with the same highest bid value, they are served 
in FIFO order. As long as a flow does not change its bid value, Deterministic 
Scheduling will not reorder queued packets belonging to a flow.1 The 
disadvantage of Deterministic Scheduling is the possibility of starvation; if higher 
bid packets keep arriving, lower bid packets will never be served. 

Dropping Policies 

We consider three dropping policies: Lottery Drop, Deterministic Drop, and the 
standard Drop Tail policies. 

The mechanism behind Lottery Drop is analogous to that of Lottery Scheduling. 
When a new packet arrives at a full queue it is placed in the queue and a lottery is 
held to determine which packet to drop. For Lottery Drop the probability of an 
individual packet being dropped is proportional to the inverse of its bid value. 

Pr(packet kis dropped) = (1/B,) / 1,(1/6,). 

Hence higher bid packets are less likely to be dropped than lower bid packets. 

Deterministic Drop selects the lowest bid packet in the queue to drop. If there is 
more than one packet with the same lowest bid, the latest to arrive is dropped. 

1 However, packets can still arrive out of order at the receiver due to network topological or routing 
changes. 



Interactions of Scheduling and Dropping Policies 

As stated above, a queuing mechanism is defined by its scheduling discipline and 
dropping policy. When combined into a single queuing mechanism, the 
scheduling discipline and dropping policy are no longer independent. For 
example, focusing on the time spent by a single packet in the queue, the number 
of packets served prior to this packet influences the chances of this packet being 
dropped. Likewise, the number of other packets dropped influences the amount 
of time the packet must wait before it sees service. Hence, it is important to 
compare complete queuing mechanisms rather than just the forwarding or 
dropping policies. The following are the combinations of scheduling disciplines 
and dropping policies we have studied: 

1. FIFO scheduling with Drop Tail (FSDT). This is the traditional router queuing 
mechanism. 

2. Lottery Scheduling with Drop Tail (LSDT). Lottery Scheduling provides lower 
latencies for higher bid packets. Drop Tail guarantees that once a packet 
enters the queue it will eventually be served. 

3. Lottery Scheduling with Lottery Drop (LSLD). This combination tends to 
favor higher bid packets in both forwarding and dropping. A packet that has 
entered the queue is not guaranteed to be forwarded. 

4. FIFO Scheduling with Lottery Drop (FSLD). This combination favors higher 
bid packets only when there is enough congestion to cause the queue to 
overflow. 

5. Deterministic Scheduling with Deterministic Drop (DSDD). This combination 
always forwards the highest bid packet and drops the lowest bid packet. 

Experiments 

We have investigated the relative ability of the various queuing mechanisms to 
differentiate QoS using an experimental testbed implemented in the FreeBSD 3.2 
operating system kernel. Results on constant flow priorities (to be reported 
elsewhere) confirm the value-sensitivity of lottery-based schemes compared to 
FIFO and drop tail, and their flexibility relative to deterministic schemes. Initial 
results on adaptive behavior with dynamic flow priorities are reported below. 

Dynamic Allocation Scenarios 

We consider two kinds of dynamic allocation scenarios to demonstrate the 
inherent survivability of market-based architectures. In both, a "normally 
operating" system is subjected to a resource shock—a sudden variation in 
resource availability or need—and must dynamically reallocate to address the 
qualitative change in environment. In the first, which we call a discrete scenario, 
the system has achieved a steady-state allocation before the shock event, which 
may consist of a lost asset, loss of a key participant, or insertion of a new high 
priority task. In the second, continuous scenario category, the system never 



reaches a steady state, as some amount of continual variation of resources and 
tasks is always present. The resource shock in this case is a qualitative jump in 
the degree of this variation. 

Dynamic properties necessary for survivability can be exhibited in the context of 
both kinds of scenarios. We have developed in-depth models of instances of both 
discrete and continuous allocation models. In this section we describe abstract 
versions of discrete and continuous resource-shock scenarios, in turn. 

Discrete Shocks in Task Dependency Networks 

In complex activities, achievement of an overall objective may require 
accomplishment of various tasks, which themselves may require subtasks, and 
so on. A plan will therefore specify an entire network of task accomplishment, 
with each path in the network representing a supply chain, that is, a sequence of 
relationships where one task is provided as input to the next in the chain, until 
the final objective is achieved. 

For example, consider a hypersimplified military scenario, where a commander 
wishes to execute an air attack. Air attacks require a bomber squad and a fighter 
squad, and these in turn require airfields.2 Given a specification of the available 
resources and task-achievement options, we can formulate a task dependency 
network (Walsh and Wellman 1998) describing the possible configurations. A 
solution to the planning problem is a subnetwork specifying the assignment of 
tasks and subtasks so that the end objective is satisfied. When there is no 
resource contention, as in the network shown in Figure 3, deriving an allocation 
supporting the air attack is simple. 

Commander 1 
Air Attack 

Bomber Squad 2 

Airfield 2b 
Fighter Squad 2 

Figure 3: A task dependency network, no resource contention. 

2 Squads and airfields might be viewed as resources rather than tasks, unless we interpret the squad, for 
example, as just a shorthand for the mission the squad performs. Which view is more natural is situation- 
dependent, and so we use the terms task and resource interchangeably in this discussion. 
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If a new task arrives, however, as represented by "Commander 2" in Figure 4, 
its resource requirement may conflict with the previous allocation. In the 
example, the ground attack cannot be accomplished, because there are not 
enough airfields to support the units required for both attacks. 

Airfield 2b 

Bomber Squad 2 

Commander 1 
Air Attack 

Commander 2 
Ground Attack 

Fighter Squad 2 

Figure 4: A second task objective introduces resource contention. 

If the new task is higher priority than the old, then we would like the system to 
adapt by dynamically reallocating the airfields to squads participating in the new 
activity. A market-based system can perform this reallocation as follows. The 
diagram of Figure 5 depicts a computational market in tasks and resources, with 
agents rendered as rectangles and exchangeable goods as circles. The shaded 
elements represent the steady-state solution to the initial situation, without 
resource contention (prices not shown). 

Bomber squad 1 

Airfield 1a 

Airfield 1b 
3 y \ \ 
)f \ Paratroopers 1    ' 

Bomber squad 2' 

Y 
, A/ \\ 

Commander 1 

■*E=l 

\\ 
Cj \< Ground Attack >o 

Figure 5: A computational market representing the task dependency network. 

To represent the resource shock, we introduce a new agent, Commander 2, who 
places a significantly higher value on its mission than did the first commander. 
The market, starting from the previous allocation and prices, adjusts prices until 
no agents change their bids. In the new steady-state solution, the higher priority 
task is achieved, and the lower priority task is unaffordable. (If both were 
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possible, then both could be supported by the market.) The extended network, 
with task valuations and final prices, is shown in Figure 6. 

Bomber squad 1 

Airfield 1a 

Air Attack 

"O 
$10 

Commander 1 

$10 

Commander 2 

Ground Attack »U M :tacK j» 

$22 $30 

Figure 6: Allocation and prices on introduction of Commander 2's task. 

We have developed a formal characterization of these task dependency 
networks, and a precise market protocol—distributed and 
asynchronous—specifying the allocation mechanisms and agent bidding 
strategies (Walsh and Wellman 1998). We have found that a broad class of 
networks reliably converge to a solution as long as the value of the end task 
sufficiently exceeds its ultimate cost (Walsh and Wellman 1999a). This implies that 
the protocol successfully adapts to discrete resource shocks of the sort described 
above, if the new task has sufficiently higher value than the others in the 
network. Similarly, the protocol can also handle necessary reallocations in case of 
loss of resources, loss of agents, or exogenous increases in cost of resources, so 
long as some tasks have sufficiently high value relative to the costs of surviving 
resources. 

In the present discussion, we assumed that we could continue the market at the 
previous prices in response to a shock. While this is a realistic assumption if the 
shock occurs during negotiation, agents may not wish to continue as such if the 
exchange contracts have been finalized. We consider it an interesting avenue for 
future work to analyze protocols for agents to reallocate tasks for which they 
have acquired rights. 

The task dependency network model is quite general, covering a broad range of 
planning and scheduling problems involving limited resources. Formally, the 
problem is NP-hard, which means that any propositional satisfiability (SAT) 
problem can be encoded in a task dependency network. As a result, the market 
protocol implements a decentralized procedure for a broad range of 
combinatorial optimization problems.3 

3 We are not claiming that the particular decentralization arising from the SAT reduction is a natural one or 
useful per se. However, it is perhaps surprising that such problems can be solved reliably without 
systematic or explicitly stochastic search. 
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Shocks in a Continuous Network Allocation Problem 

Unlike the episodic task allocation considered above, in continuous dynamic 
scenarios, the commodities themselves are typically controllable at fine grain. In 
addition, the allocation is continuously updated over time as computational and 
communicational activities originate and terminate on the system. Resource 
shocks take the form of sudden changes in the profile of resources available or 
activities demanded.4 

In preliminary studies of the packet scheduling problem, we have verified some 
expected qualitative behaviors of adaptation to continuous resource shocks. 
Upon shocks (such as a sudden increase in priorities for a fraction of service 
requests), a system under the control of lottery scheduling rapidly transitions to 
an appropriate revised profile of service levels. The speed and sharpness of the 
transition depends significantly on the volume and nature of the fraction of 
traffic that is unchanged by the shock. 

For example, Figure 6 shows the response of network traffic to two shocks, 
measured in terms of the percentage of sent packets received (i.e. not dropped 
due to buffer overflow). We initially experiment with 40 connections all 
submitting the same bid value with each packet to be delivered. Around 100 
seconds into the experiment, half of the connections increase their priority (and 
hence bid values) five-fold. As the graph shows, when network switches 
implement the lottery drop (LD) policy, connections that increase their bid values 
immediately see improvements on the percentage of packets received at the 
destinations. This comes at the cost of worse service experienced by lower 
bidding connections. At around 200 seconds into the experiment, half of the 
connections that earlier raised their bid value double them again. These 
connections again immediately see improvements in service over those that do 
not raise their bids. Finally, at around 300 seconds into the experiment, the 
highest bidding connections lower their bids back down by half. This results in 
half of the connections again receiving the same service that is better than the 
service seen by the other half that never raised its bid value. Figure 7 also shows 
that if in addition to lottery drop network switches also implement lottery- 
scheduling (LS), as opposed to first-in-first-out scheduling (FS), packets with 
higher bids see additional preferential treatment. 

4 In general the quantity and time scales need not match: there are common problems involving 
continuously varying quantities allocated at discrete intervals; likewise there are interesting problems in the 
allocation of discrete goods continuously over time (e.g., airport landing slots, (Rassenti, Smith, and 
Bulfin 1982)). 
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Figure 7: Response to shock with constant bit rate transmissions. 

All the connections in the experiment described above transmitted at constant bit 
rate. Researchers in network traffic characterization have observed long-range 
dependency in aggregate network traffic (Leland et al. 1994). To study the 
effectiveness of our market-based packet scheduling mechanism on long-range 
dependent traffic, we conduct a similar experiment on sources generating on-off 
traffic with Pareto distributed on and off times. Aggregate traffic from such 
sources has been shown to exhibit long-range dependency (Willinger 1995). 
Figure 8 shows that in the face of long-range dependent traffic, while higher 
bidders continue to receive preferential treatment under lottery drop, and an 
exaggerated preferential treatment under lottery scheduling, lower bidders do 
not suffer as much as in the previous case. The high variance of long-range 
dependent traffic allows lower bidding traffic to continue to be served at 
network switches, albeit with a longer delay. Hence, when network traffic is 
very bursty, lower bidding traffic experiences longer queuing delay but not 
higher loss rate. 

0.95 

0.9 - 
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100000   200000   300000   40000C 
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Figure 8: Shock response with Pareto-distributed background traffic. 
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Computational Market Testbed 

Our computational market infrastructure is based on the Michigan Internet 
AuctionBot,5 a configurable auction server that supports a wide range of 
negotiation mechanisms. The AuctionBot has a web interface for human traders, 
as well as an API for software agents. In addition, we have built extended 
modules ("agentware") to facilitate development of software traders, and tools 
for specification of entire market configurations. Thus, the AuctionBot serves as a 
general tool for rapid construction of market-based demos. 

Bid or 
withdraw 
event 

Scheduler 

All events 

New data 
or update Select and 

update data 

Clear, quote, 
or expire 
event 

Auctioneer 
Kernel 

Figure 9: AuctionBot architecture and data flow diagram. 

The basic organization and operation of the AuctionBot is depicted in Figure 9. 
Human or software agents create auctions or submit bids via web or 
programming interfaces (O'Malley and Kelly 1998). A scheduler maintains a 
queue of pending events—processing bids, clearing auctions, or releasing 
information. An event is activated when it rises to the top of the queue (i.e., all 
necessarily prior events have been initiated) and its earliest activation time (if 
any) is past. The schedule passes activated events to the respective auctioneer 
kernels, which ensure that the events are executed in a manner respecting 
temporal consistency (Wellman and Wurman 1998b). A relational database 
maintains persistent data about bids, agents, and auction specifications, 
providing availability of relevant negotiation information to agents even when 
auction processes are inactive or excessively busy. 

The AuctionBot is designed to cover a large class of conceivable auction 
mechanisms, as defined by our systematic parametrization of the design space 
(Wurman, Wellman, and Walsh to appear). This configurability is implemented 
by a flexible multi-level scheme supporting multiple representations for bids and 
order books (sets of bids), and multiple clearing algorithms implementing 
allocation rules. As depicted in Figure 10, some characteristics of bid and order- 
book representations are generic to all auctions, some depend on the form of 

http://auction.eecs.umich.edu/ 
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bids allowed, and yet others are optimized for particular clearing algorithms. For 
example, the "4-heap" data structure supports a broad class of allocation 
mechanisms for discrete goods (Wurman, Walsh, and Wellman 1998), but can be 
overridden in a modular manner to support alternative or new mechanisms. 

bid table (hashed) 
"" "   " " "" '"Expiration"   "Auctioneerbase class 

Queue 
jser ID          ptr 

\ Kl% 
*          Cärigüäge Level Class 

^ 
/ 

BidData 

PQ Notification       ?^X^ 
(Doubly               Cr 

Internal 
Representation 

Linked                 o 
List)                      I 

u 
Aigornnm tevei uiass 

4-heap algorithm 

SP Notification      9/ 
(Doubly               if 
Linked                 A 

List)                     J 

vy vy 

. _... .. ^  J 

Figure 10: Flexible multi-level data structures for bids and order books. 

Current work is developing AuctionBot functionality further, in particular 
(1) augmenting the range of negotiation mechanisms, (2) improving tools for 
specification of scenarios, (3) and extending the API and agentware, especially to 
facilitate participation by third-party agent developers.6 

Other technical enhancements to the market protocols underway are designed to 
improve their acceptability in real distributed computation environments. These 
include 

1. Protocol layers addressing security and privacy requirements (Harkavy, 
Tygar, and Kikuchi 1998; Kelly 1998; Naor, Pinkas, and Sumner 1999). 

2. A protocol layer for distributed detection of quiescence in the negotiation 
process (e.g., when a steady state is reached after a shock). Our approach 
(Wellman and Walsh 1999) is based on an extension of the Dijkstra-Scholten 
algorithm for detecting termination in a diffusing computation (Dijkstra and 
Schölten 1980; Lynch 1996). 

6 The AuctionBot has been operational and available over the Internet since 1997, and versions of our 
agentware are already available. 
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Discussion: Evaluating Adaptive Behavior 

To make statements about inherent survivability based on our work, we require 
evaluation criteria for the adaptivity properties of our demonstrated 
architecture.7 

Adaptation is required only in the event of unanticipated change, so we define 
adaptation scenarios in terms of the cause and nature of changes. Adverse 
changes in fundamental operating conditions ("failures") may be caused by 
intentional attacks as well as accidental causes (e.g., hardware or software bugs). 
Other changes in the environment may not be considered failures, but may 
nevertheless entail significant adaptation due to new directives, loss of resources, 
additional resources introduced, or other revisions in capabilities. For our 
purposes the cause of the resource shock is typically not relevant, as the 
allocation problem is the same regardless of whether the change in resource 
environment is due to an intentional attack or accidental event.8 

The second question is how to evaluate an adaptation episode. The standard of 
performance is with respect to the behaviors possible given the resource shock; it 
is not useful to compare performance to what could have been achieved in the 
absence of a shock. We presume that the system is comprised of multiple 
participants (i.e., we have a distributed or multiagent system), each with its own 
objectives or preferences over possible outcomes. These outcomes in general 
characterizes complete temporal courses of activity, not just instantaneous states. 
The overall welfare of a system is some function of the outcomes of all of the 
respective participants, accumulated over time. For example, one simple welfare 
function would be a time-discounted sum of utility functions representing the 
respective preferences of all of the participants. 

For example, consider the response of the task network protocol to discrete 
shocks, as discussed above. We have been able to establish that under certain 
conditions, the protocol responds successfully to adverse shocks, such as the loss 
of a basic resource or of some production capability, or increase in cost or 
degradation of same. "Successfully" here means that if a good enough solution 
exists in the degraded state, then the protocol will find it when resumed from a 
previous steady state. 

This characterization of adaptivity is quite helpful, but it does not provide a 
quantitative measure of the quality of solutions reached. We have begun to 
evaluate the quality of solutions found for the baseline market-based task 
network protocol (without shocks), by measuring the total surplus achieved by 

7 Some of this discussion is based on the report of the "Measuring Adaptivity" working group at the 
DARPA/ITO Workshop on Adaptive Architectures for Information Survivability, May 1998. Group 
members were V. Lesser, F. Webber, M. Wellman, D. Wells, and Y. Yemini. Views expressed here, of 
course, are our sole responsibility. 
8 However, the cause is highly relevant to anticipation and prevention of future resource shocks. We view 
this as outside the scope of what market-based architectures provide. Prediction and prevention techniques 
(e.g., intrusion detection) are thus complementary rather than competitive methods. 
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all agents in the system (Walsh and Wellman 1999a). The surplus for a given 
agent is the difference between the value of what it obtains, and what it pays. In 
a series of randomly generated task allocation networks, we found that solutions 
achieved about 83% of the optimal surplus on average. Most of the efficiency loss 
was due to agents that purchased one or more inputs without selling their 
outputs. By extending these protocols to permit decommitment (Sandholm and 
Lesser 1996) in such cases, we can recover much of the inefficiency, and achieve 
97% of total surplus on average (Walsh and Wellman 1999a). 

These results are merely suggestive, as exact values will depend on the method 
for generating problem instances, among other factors. Moreover, for 
evaluating adaptivity we must examine specific shock scenarios. In this case, we 
would expect the system to achieve comparable fractions of available surplus for 
the case of shocks attributed to lost resources, rising resource costs, or the 
introduction of higher valued tasks. Whether the protocol would prove to be as 
effective at adapting to the availability of new resources or production 
capabilities is an open question. 

In related work, we have emphasized the importance of evaluating the time path 
of performance, and comparing different solutions based on their time- 
discounted sum of agent utilities over time (Brooks et al. 1999). For example, one 
solution might be guaranteed to yield the highest value once the adjustment to 
the new situation is complete, whereas another has a lower ultimate value, but 
rises towards its steady-state value much more quickly. Enough advantage over 
the earlier periods following the shock may outweigh, after discounting, 
permanent long run gains from the former approach. 

Finally, in evaluating adaptivity we must consider some overarching criteria that 
go beyond quality of allocations achieved. These include online costs, such as 
overhead of the adaptive infrastructure, as well as offline costs, such as the effort 
in building the infrastructure, creating interfaces for system components, and 
modeling domains so they can effectively exploit the adaptive features of the 
system. 
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